BIOHYDROGEN compare hydrogen energy to fossil energy sources

BIOHYDROGEN PRODUCTION OUT OFMOLASSES WHY HYDROGEN SHOULD BEPREFERED?              Hydrogen is thesimplest and most abundant element in the nature, along with being the lightestchemical. Colorless, odorless, non-poisonous and 14.4 times lighter than air.  Among all fuels, hydrogen is the fuel with themost energy per unit mass. (Upper heat value 140.9 MJ / kg, lower heat value120.7 MJ / kg) 1 kg of hydrogen, 2.

1 kg of natural gas or 2.8 kg of petroleum.It is an average 1.

33 times more efficient fuel than petroleum fuels. When wecompare hydrogen energy to fossil energy sources the amount of pollutants andgreenhouse gases produced are quite low. Today, most of the hydrogen is obtainedfrom natural gas, and unfortunately natural gas is also a fossil fuel. Today,about 80% of the world’s energy needs are met by fossil fuels. Fossil fuel use;air pollution, acid rain, global warming, climate change, ozone layerperforation. The investigations prove that hydrogen energy will provide a moreactive energy to negate the negative effects of fossil fuel use. Hydrogenenergy, defined as the energy of the new century, is a clean and efficientenergy system that does not contain any polluting gases and harmful chemicals(such as carbon monoxide or carbon dioxide).

However, in order to be used asenergy, it has to be separated from the compounds in the nature. Hydrogen isthe most environmental friendly hydrogen production with the separation ofwater using the energy obtained from renewable sources such as wind and sun.Hydrogen production in the world is basically as; -48% from natural gas, -30% from petroleum, -18% coal, It is produced from waterwith -4% electrolysis.

Best services for writing your paper according to Trustpilot

Premium Partner
From $18.00 per page
4,8 / 5
4,80
Writers Experience
4,80
Delivery
4,90
Support
4,70
Price
Recommended Service
From $13.90 per page
4,6 / 5
4,70
Writers Experience
4,70
Delivery
4,60
Support
4,60
Price
From $20.00 per page
4,5 / 5
4,80
Writers Experience
4,50
Delivery
4,40
Support
4,10
Price
* All Partners were chosen among 50+ writing services by our Customer Satisfaction Team

 WHAT IS BIOHYDROGEN?              Biohydrogen is ahydrogen gas (H2) which is produced biologically. This technologydraws interest of scientistsbecause H2 is a clean fuel, and H2 can be produced bydifferent kinds of biomass. Biohydrogen is the hydrogen which is producedbiochemically by the help of some microorganisms thatgrow without oxygen in dark and/or light conditions from organic carbon sourcessuch as cellulose, hemicellulose, sugar or volatile fatty acids.  WHAT IS FERMENTATION?                 Fermentation is the chemical disintegration of a substance through bacteria, fungi, and other microorganisms, usually by heat and foaming. Fermentation is an important biochemical process that provides ATP production by glycolysis under anaerobic conditions, that is, where oxidative phosphorylation is not possible. The branch of biochemistry interested in fermentation is zymology.

In fermentation, glucose provides energy production by losing hydrogen individually. As there is no oxygen, the simple organic compounds resulting from this fragmentation are the final electron acceptor and hydrogen acceptor that the cell can use.Even if the last step of fermentation (conversion to pyruvate fermentation products) does not produce energy, this process is important for an anaerobic cell because nicotinamide, which is consumed during the conversion of glucose to pyruvate, allows the renewal of adenine dinucleotide (NAD +); This is necessary for the continuation of glycolysis. For example, in alcohol fermentation, the acetaldehyde formed in the vat is converted to ethanol by NADH + H +, which is expelled from the cell.In glycoses fermentation, the most commonly produced simple compound is pyruvate or one or more compounds derived therefrom: ethanol, lactic acid, hydrogen, butyric acid and acetone. While the fermentation of sugars and amino acids can be seen in various organisms, some rare organisms may also ferment alkanoic acids, purines, pyrimidines and other compounds.

Various fermentation types are named according to the products they produce.Although fermentation is used in biochemistry for energy-generating reactions in the absence of oxygen, it has a more general meaning in the food industry, including the breakdown reactions of microorganisms in the presence of oxygen (such as vinegar fermentation). This term is used more generally in biotechnology, and any production (including proteins) fermentation done in microorganisms grown in large tanks is called fermentation. HOW IT PRODUCES ENERGY?  Glycolysis is the sole source ofadenosine triphosphate ATP under anaerobic conditions. Fermentation productscontain chemical energy because they are not completely oxidized. However, inthe absence of oxygen or other highly oxidized electron acceptors, they are nolonger able to metabolize, leaving a residue for the cell.

Therefore, ATPproduction by fermentation is less efficient than oxidative fermentation, inwhich the pyruvate is fully oxidized to carbon dioxide. While two ATP moleculesper glucose are produced in fermentation, this figure is 38 ATP in aerobicrespiration. Although the energy output is low, fermentation provides anadvantage to many organisms as it allows for the lack of oxygen. The most common ingredient used for fermentation is sugar. Some ofthe products obtained from this fermentation are carbon dioxide, ethanol,lactic acid, and hydrogen gas (H2).  Ethanol fermentationThe chemical equation below shows the alcoholic fermentation ofglucose, whose chemical formula is C6H12O6.

Oneglucose molecule is transformed into two ethanol molecules and two carbondioxide molecules:C6H12O6 ? 2 C2H5OH+ 2 CO2C2H5OH is the chemical formula for ethanol.Before fermentation takes place, one glucose molecule is brokendown into two pyruvate molecules. This is known as glycolysis.Hydrogen gas production in fermentationHydrogen gas is produced in many types of fermentation (mixed acidfermentation, butyric acid fermentation, caproate fermentation, butanolfermentation, glyoxylate fermentation), as a way to regenerate NAD+ from NADH.Electrons are transferred to ferredoxin, which in turn is oxidized byhydrogenase, producing H2. Hydrogen gas is a substrate formethanogens and sulfate reducers, which keep the concentration of hydrogen lowand favor the production of such an energy-rich compound, but hydrogen gas at afairly high concentration can nevertheless be formed, as in flatus.As an example of mixed acid fermentation, bacteria such asClostridium Pasteurian ferment glucose producing butyrate, acetate, carbondioxide and hydrogen gas.

The reaction leading to acetate is:C6H12O6+ 4 H2O ? 2 CH3COO?+ 2 HCO3? + 4 H+ + 4 H2Glucose could theoretically be converted into just CO2and H2, but the global reaction releases little energy. WHAT IS MOLASSES?  Molasses is a viscous product resulting from refining sugarcane orsugar beets into sugar. Molasses varies by amount of sugar, method ofextraction, and age of plant. Sugarcane molasses is agreeable in taste andaroma, and is primarily used for sweetening and flavoring foods in the UnitedStates, Canada, and elsewhere, while sugar beet molasses is foul-smelling andunpalatable, so it is mainly used as an animal feed additive in Europe andRussia, where it is chiefly produced. Molasses is a defining component of finecommercial brown sugar. Some cations and amino nitrogen compounds inhibit sucrose uptake duringfabrication.

After the sucrose is extruded, the remaining liquid is called molasses.Sweet sorghumsyrup may be colloquially called “sorghum molasses” in the southernUnited States. Similar products include treacle, honey, maple syrup, cornsyrup, and invert syrup.

Most of these alternative syrups have milder flavors.  Chemical •          The carbon source for in situremediation of chlorinated hydrocarbons•          Blended with magnesium chloride andused for de-icing•          A stock for ethanol fermentation toproduce an alternative fuel for motor vehicles•          As a brightener in copperelectroforming solution when used in tandem with thiourea BIOHYDROGEN PRODUCTION OUT OFMOLASSES             Today, consumption of fossil fuels is increasing. Efforts todestroy the ecosystem, to get rid of foreign dependence in the energy field ofthe country and to increase energy diversity have increased the importance offuels like bioethanol. Production of bioethanol from sugar beet mulberry asbiomass will lead to the opening of a new market for beet crops, the spreadingof planting seasons, the cultivation of energy agriculture and the increase ofsugar beet cultivation areas. At the same time, bioethanol is also important interms of contributing to the diversity of agricultural production, contributingpositively to ecology, establishing a sustainable agricultural structure, andsupporting rural development. Bioethanol is generally obtained by fermentationfrom plants containing sugar and starch.

Molasses is used in the production ofbioethanol in sugar beet. Melastan bioethanol production; fermentation,distillation. The alcohol obtained in ethanol production is 96% pure and cannot be used as fuel alcohol. Ethyl alcohol must be at least 99.5% pure in orderto be able to use it as fuel.

For this reason, alcohol plants requirepurification and dewatering units after the fermentation unit. Today, due tothe decrease of oil reserves and environmental problems, alternative energysources such as bioethanol should be emphasized. BIOMASS PRODUCTION BYFERMENTATION                 Biomass production by fermentation occurs in two ways, photo fermentation and dark fermentation.Photo fermentationThe photosynthetic microorganism produces H2 by catalyzing organic acids with nitrogenase in the presence of solar energy. Hydrogen Production with Photo Fermentation The reaction is as follows;C6H12O6 + 6H2O + light energy ? 12H2 + 6CO2Hydrogen Production with PhotosyntheticBacteria for Industrial Production;-The formation of high theoretical conversion efficiency,The absence of oxygen evolution, which causes the problem of loss of activity in distinct biological systems,- The availability of light in the broad spectrum,- It has advantages such as organic substrates which can derive from the wastewater, and the ability to consume them, to have wastewater treatment potency.Dark FermentationDuring the production of hydrogen by dark fermentation, anaerobic bacteria produce hydrogen in dark conditions using organic substrates.

Because the anaerobic bacteria used do not need the light. Hydrogen Production with Dark Fermentation The reaction is as follows;C6H12O6 + H2O – & 4H2 + 2CO2 + 2CH3COOH Production of Hydrogen by DarkFermentation for Industrial Production; – No need for light energy, – the availability of various carbonaceous wastes assubstrates, -Manufacture of organic acids as a product of the sea, it hasthe advantages of not having oxygen restriction problem. Factors Affecting Biohydrogen Production -Substrate Factor: Three different substrates (biomass) can be used:sugar-containing biomass, starchy biomass, lignocellulosic biomass. Thesebiomasses may be various agricultural wastes or industrial wastes. – Bio Degenerative Bacteria Factor: According to thefermentation type, photosynthetic and fermentative bacteria are used. In theselection of the bacteria, conversion efficiency, formed by-products,environmental conditions (temperature, pH) are important. – Reactor Type Factor: The hydrogen yield can be increased byselecting the appropriate parameters such as the organic loading rate in fullstirred continuous reactors. Alternatively, the arrested cell reactor type andthe biofilm reactor type may be used.

As the volumetric hydrogen productionrate increases, the reactor size shrinks. – Nitrogen and Phosphorus Factor: Protein, Nucleic acid andthe structure of enzymes is necessary because of the presence of nitrogen.Phosphate is required for reaction with both its nutrient value and itsbuffering capacity. – Metal Ion Factor: The cell ATP increases enzyme activity inNAD synthesis. When used at extreme concentrations; preventing the formation ofthe desired enzyme, can cause high osmotic pressure. – Temperature Factor:The temperature increase in the appropriate range increases the ability of thebacterium to produce hydrogen.

But at very high temperatures this ability isreduced due to degradation of the enzymes. The cell can die. The optimumtemperature for mesophilic interval is 37 C, for thermophilic range is 55 C.

– Acid Blocker Effect and pH Exchange Factor: Due to highconversion, the environment can be acidified by means of by-products. Non-polaracids change the intracellular pH by populating the cell wall at low pH. Thiscreates an inhibition effect. The optimum pH for hydrogen production is in therange of 5-7.HydrogenPartial Pressure Factor: The hydrogen pressure in the reactor decreases thehydrogen production. Hydrogenase converts the hydrogen in the liquid toferrodoxine.

vacuum application, inert gas spraying, strong mixing, nitrogenand hydrogen permeable membranes can be applied.?eker pancar?ndan elde edilen ba?l?ca ürün ?ekerdir ve?eker oldukça fazla mikroorganizma ile kolayl?kla fermente olabilme özelli?inesahiptir. Bir ton ?eker pancar?ndan yakla??k olarak %50 sakkaroz içeren 20 kgmelas elde edilmektedir. Kökten sakkaroz ve melas elde edildikten sonra geriyeposa kalmaktad?r. ?eker pancar?n?n ekstraksiyon i?lemi sonras?nda çözünemeyen, ?ekerpancar? kökündeki %22 ile %28 oran?nda de?i?en kuru madde posay? temsiletmektedir ve bu posa fermente olabilme özelli?ine sahiptir. ?ekerin etanoledönü?üm sürecinde mayalar ve baz? bakteriler ?ekerlerin anaerobik çevirimi ilefermantasyon sa?lamas?nda rol oynamaktad?rlar.

Dünya etanol yak?t üretimininneredeyse yar?s? ?eker bitkilerinden üretilmektedir (ço?unlukla ?eker kam???melas?) di?er kalan yar?s? ise tah?llardan üretilmektedir. ?eker bitkileridünyada çok geni? alanlarda yeti?tirilebilmektedir. Bu nedenle, tah?llara görebaz? avantajlar? bulunmaktad?r. ?eker pancar?n?n tah?llara ve di?er selüloziçeren bitkilere oranla bir ba?ka avantaj? daha bulunmaktad?r. Bu da do?rudanfermente edilmeleri nedeniyle daha az sürece ihtiyaç duymalar?d?r. Enerjiye dönü?türülebilmepotansiyeline sahip olan bitkiler olarak ?eker kam???, ?eker pancar? ve tatl?sorgum s?v? yak?t yani etanol, ?s? ve elektri?e çevrilebilmektedirler. Dünyadaki Durum ”2014 y?l?nda AB ülkelerinde üretilen 6.

6 milyar litreetanol m?s?r (%42), bu?day (%33), ?eker pancar? (%18), ve di?er tah?llardan(%7) elde edilmi?tir. Toplam 10.5 milyon ton tah?l ve 2.21 milyon ton kota d????eker pancar? (beyaz ?eker e?de?eri) etanol üretimi için kullan?lm??t?r. Bude?erler 2014 y?l? için Avrupa tah?l üretiminin %2’si ile ?eker pancar?üretiminin %8’ine kar??l?k gelmektedir. Dünyada 2014 y?l?nda üretilen 90.5milyon litre yenilenebilir etanol üretiminde Avrupa çok küçük bir payasahiptir. Üretilen etanolün ço?u yenilenebilir ta??t yak?t? olarak iç tüketimeyöneliktir.

ABD (%60) ve Brezilya (%30) en fazla etanol üreten ülkelerdir veAvrupa Birli?indeki üretim ise (%7) daha dü?üktür.”?ekerin etanole dönü?ümü sadece fermantasyonu içerenbasit bir i?lemdir, fakat m?s?r, bu?day vb. tah?llardan s?v? yak?t eldeedilmesi için ni?astan?n ?ekere dönü?ümü i?leminde enzimlere de ihtiyaç vard?r.Ancak tah?llar ile kar??la?t?r?ld???nda bioetanol hammaddesi olarak ?ekerpancar? kullan?m?nda ?eker pancar? köklerinin depolanmas? önemli bir engelolarak görülmektedir. Birim alan dikkat etti?imizde ise ?eker pancar? etanoliçin en verimli kaynaklardan birisidir.

”?eker pancar?ndan (taze a??rl?kolarak) 2.44 GJ/t enerji elde edilebilmekte ve bu de?er etanole çevrildi?inde115 l/t etanol üretildi?i varsay?lmaktad?r. Ortalama verimi dikkate al?nd???nda (46 t/ha pancar, 4.9 t/ham?s?r, 2.

8 t/ha bu?day) pancardan 5.060 l/ha, bu?daydan 952 l/ha ve m?s?rdan1.960 l/ha alkol elde edilmi?tir. ABD ve Avrupa’da, k??l?k pancar?nyeti?tirildi?i Akdeniz, yar? tropikal ve kurak tropikal iklimlerde sulamayap?l?yorsa verim potansiyeli çok yüksektir.

K??l?k pancar?n yeti?me süresi210-300 gündür, geç yazda ekilip takibeden geç ilkbahar veya yaz aylar?ndahasat edilmektedir. 100 t/ha pancardan 115 l/t (taze a??rl?k) etanolüretilmektedir, etanol verimi 11.500 l/ha ile ABD’de m?s?r veriminden eldeedilenden 3 kat daha yüksek olmu?tur (9.4 t/ha m?s?r veriminden 3751 l/ha). ”Hem yazl?k ve hem de k??l?k ?eker pancar? üretileniklimler biyoyak?t üretimi için en çok tercih edilen yerlerdir çünkü bu iklimtiplerinin görüldü?ü yerlerde y?l?n büyük bir k?sm?nda pancarlar günlük hasatedilebilmektedir.

Biyokütle verim potansiyeli, al?nan güne? enerjisine ba?l?olup bu ko?ullar vejetayon süresi uzun olan k??l?k pancar için avantajl?olmaktad?r. Biyoyak?tiçin biyokütle verimi en önemli parametre olarak kabul edildi?inde ?ekerpancar?n?n melezlenmesi ile daha yüksek biyokütle elde edilebilecektir. ?e?er Pancar? Üretiminin Artmas? Nas?l Desteklenmelidir?Ülkemizde motorlu araç say?s?n?n her geçen gün artmaktad?r,akaryak?t masraf?n?n çok yüksek olmas? alternatif enerji kaynaklar?na üretimineyol açm??t?r.

Ayn? zamanda araçlar?n da motorlar?n?n bu tür yak?tlar?kullanabilecek ?ekilde yap?lmas? gerekmektedir. ?eker fabrikalar? bünyelerindebulunan alkol üretim tesislerin yaln?zca susuzla?t?rma birimi eklenerekbiyoetanol üretimi yap?labilecek duruma geleceklerdir. ?eker fabrikalar?n?nüretim kapasitelerine uygun olarak i?lenecek ?eker pancar? üretimiart?r?lmal?d?r. Ayr?ca ülkemizde yeti?tirilmekte olan yazl?k pancara ek olarakbiyoetanol üretimi için k??l?k pancar üretimi de dü?ünülmelidir. Ancak pancarekim alanlar?n?n artt?r?lmal?d?r. Biyoetanol içerikli benzin kullan?ld???ndatar?m sektörü desteklenecek, araçlar?n performans? yükselecek, hem de daha ucuzyak?t ve daha temiz ve sa?l?kl? bir çevre söz konusu olacakt?r. Sonuç K?saca hidrojen enerjisi di?er fosil enerji kaynaklar?ylakar??la?t?r?ld???nda enerji verimlili?i, kaynak çe?itlili?i ve çevreye zararl? etkisibulunmamas? aç?s?ndan üstün bir konumdad?r. Bu nedenle üretim maliyetinindü?ürülerek hidrojen enerjisinin kullan?m?n?n artt?r?lmas? veyayg?nla?t?r?lmas?n?n dünyam?z?n gelece?i aç?s?ndan birincil derecede önemlioldu?u kabullenmelidir.

Bilim adamlar?na göre küresel ?s?nman?n, çevrekirlili?inin, görüntü kirlili?inin, asit ya?murlar?n?n, ozon tabakas?n?ndelinmesinin, iklim de?i?ikli?i gibi birçok önemli sorunun tek ve kal?c? çözümühidrojen enerji sisteminin kullan?lmas?d?r. Biyolojik yolla hidrojen üretimihidrojen gaz? üretimi için iyi bir alternatiftir. Biyolojik yolla hidrojenüretim teknolojilerinden mevcut ko?ullara göre maliyet ve verimlilik aç?s?ndanen uygun olan? seçilerek üretimde kullan?lmal?d?r. Çünkü kullan?lanbiyokütleye, enzim türüne, mikroorganizma türüne, ortam ko?ullar?na göreseçilecek yöntem farkl?l?k gösterecektir. Bu nedenle yöntemler aras?ndakar??la?t?rma yaparak herhangi bir yöntemin di?erlerine göre daha iyi oldu?ununsöylenmesinin yanl?? oldu?u aç?kça ortadad?r. Ayr?ca bu yaz?da da üzerindedurulan ve biyohidrojen üretiminde çok önemli bir pay? olan at?k materyalseçimi do?rudan verimi etkileyecek bir faktördür.

Bu nedenle bol miktarda vekolay bulunabilen, ucuz, i?lemler s?ras?nda kolayca parçalanabilen ve kirlili?iortadan kald?r?rken yeni bir kirlilik olu?turmayacak at?k materyal seçimine özengösterilmelidir. Böylece farkl? at?k materyallerden biyohidrojen üretimi ilehem at?k materyalin kullan?m? hem de temiz enerji kayna??n?n üretimi sa?lanm??olur.